生物化学研讨所建议基于量子限域离子超流体的神经时限信号传输进程

传统的Hodgkin-Huxley模型认为,神经信号传输是通过动作电位沿着神经元轴突进行传播,动作电位是由K+/Na+在Na/K泵的离子扩散产生的,而其余大部分Na/K泵是静止的。这种离子流体是熵驱动的无序流体,离子扩散过程需要消耗大量能量,类似于多米诺骨牌效应,传播速度相对较慢,不适用于解释神经信号的超快传输。

传统的Hodgkin-Huxley模型认为,神经信号传输是通过动作电位沿着神经元轴突进行传播,动作电位是由K+/Na+在Na/K泵的离子扩散产生的,而其余大部分Na/K泵是静止的。这种离子流体是熵驱动的无序流体,离子扩散过程需要消耗大量能量,类似于多米诺骨牌效应,传播速度相对较慢,不适用于解释神经信号的超快传输。

生物离子通道在物质转移、能量转换和信号传输等多种生理过程中起着重要作用。信号可以基于生物离子通道在视觉、嗅觉、听觉和触觉等过程中经神经传递到大脑。这些功能高度依赖于具有选择性的生物离子通道的高速离子传输(每个通道每秒107个离子)。这种超快物质传输源于离子通道的特殊性质,例如,小尺寸、独特的结构和表面电荷分布等,从而导致离子和分子以单链形式进行超快传输。从经典热力学角度看,具有化学选择性的纳米通道的物质传输应该是非常缓慢的。然而,在生命体系中,离子和分子的快速传输表现出量子化的超快流体状态。例如,NaK通道每次只能容纳一个水合Na+离子;K通道含有两个相距约7.5埃的K+离子,中间有一个水分子;每个Ca离子通道也同时结合两个Ca2+离子。

近日,中国科学院理化技术研究所仿生智能界面科学中心在Nano Research
发表了题为Quantum-confined ion superfluid in nerve signal transmission
的文章,提出了基于量子限域离子超流体的神经信号传输过程,认为QISF是焓驱动的限域有序流体,K+/Na+同时在所有Na/K泵通道进行快速传输,离子传输过程没有能量损耗,并产生沿着神经元轴突超快传播的QISF波,作为神经信号传输的信息媒介。QISF波和动作电位在传播过程中不相干。同时发现K+和Na+的德布罗意波长比直径小一个数量级,但原则上离子的德布罗意波长应远大于离子直径,表明德布罗意波长公式不适用于描述离子在生物通道中的量子效应。

图片 1

近日,中国科学院院士、中国科学院理化技术研究所研究员江雷将生物孔道中离子和分子以单链的量子方式快速传输定义为“量子限域超流体”,并指出限域孔道内离子和分子的有序超流为“量子隧穿流体效应”,该“隧穿距离”与量子限域超流体的周期相一致。结合该课题组近期研究成果(Adv.
Mater.
, 2016, 28, 3345-3350;Angew. Chem. Int. Ed., 2017, 129,
5814-5818),他们发现仿生体系也存在量子限域超流现象,例如人工离子通道和水通道内物质的快速传输(每秒~106个离子)。最后,他们在展望中指出,通过把量子限域超流体概念引入化学领域,将引发出精准化学合成,即量子有机、无机、高分子反应等。而引入到生物学领域,将产生量子超流的生物化学、生物物理、生物信息学以及生物医学等。在此基础上,也将产生其他的新科学和新技术。

QISF过程的提出,不仅为神经和大脑中超快信号传输的合理解释提供了新的视角,而且对离子、分子和粒子的物质波理论提出了挑战。

文章发表在《中国科学-材料》(SCIENCE CHINA
Materials
)上,论文标题为Quantum-confined superfluidics: From nature
to artificial

论文链接

文章链接